Основные понятия об электрической цепи Расчёт цепей переменного тока Трехфазная цепь Нелинейные электрические цепи Графический метод расчета Выпрямители переменного тока

Основы электротехники Расчет электрических цепей

В теории электрических цепей допускается возможность однозначной, не зависящей от выбора пути, оценки электрических напряжений меду любыми двумя зажимами исследуемой электрической цепи. Это позволяет определять электрическое напряжение как разность потенциалов между соответствующими зажимами электрической цепи

Трансформаторы

Основные понятия о трансформаторах

Трансформатором называют статическое электромагнитное устройство, имеющее две или большее число индуктивно связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной системы переменного тока в другую. Для усиления магнитного потока и увеличения магнитной связи между обмотками последние размещаются на ферромагнитном сердечнике. Основное назначение трансформаторов – изменять напряжение переменного тока. Однако они могут применяться также для преобразования числа фаз и частоты.

Трансформатор характеризуется номинальными данными, которые указаны на его заводском щитке.

Номинальная мощность трансформатора Sн – полная мощность на зажимах вторичной обмотки, указываемая на щитке и выраженная в вольт–амперах (ВА) или киловольт–амперах (кВА).

Номинальное первичное напряжение U1Н – напряжение сети, на которое рассчитан трансформатор.

Номинальное вторичное напряжение U2Н – напряжение на зажимах вторичной обмотки при холостом ходе и номинальном первичном напряжении.

Номинальные токи обмоток – первичный I1Н и вторичный I2Н – токи, соответствующие номинальным значениям напряжений и мощности. Так как КПД трансформаторов сравнительно высок, то принимают, что у двухобмоточного трансформатора номинальные мощности обеих обмоток равны. Теория электрических цепей Курс лекций и задач.

В цепях трехфазного тока трансформирование электрической энергии осуществляется с помощью трехфазных трансформаторов. При этом принято начала фаз обмотки высшего напряжения обозначать А, В, С, а их концы – X, Y, Z; начала фаз обмотки низшего напряжения соответственно – a, b, c, а концы – x, y, z. Для трехфазных трансформаторов в качестве номинальных значений напряжений и токов указывают линейные величины.

Как первичные, так и вторичные обмотки трехфазных трансформаторов могут соединяться звездой (символ , а при выведенной нейтральной точке – ) или треугольником (символ ). Обычно применяются схемы соединения , , , которые являются основными. Символ способа соединения обмотки высшего напряжения принято указывать в числителе. способа соединения обмотки высшего напряжения принято указывать в числителе.

Первичную обмотку трансформатора присоединяют к питающей сети переменного тока. Ток первичной обмотки I1 имеет активную и индуктивную составляющие. При разомкнутой вторичной обмотке (холостой ход), вследствие действия индуктивной составляющей тока I0, возникает магнитный поток, намагничивающий сердечник. Активная составляющая тока I0а определяется потерями, возникающими в листах стали при перемагничивании сердечника. Большая часть потока Ф1, созданного первичной обмоткой, сцеплена также со вторичной обмоткой фазы и является потоком взаимоиндукции между обмотками или основным рабочим потоком Ф. Другая часть полного потока Ф1 сцеплена только с витками первичной обмотки. Её называют потоком рассеяния. На рисунке 5.1 поток рассеяния первичной обмотки Фσ1 условно показан линиями магнитной индукции, сцеплёнными только с витками первичной обмотки. Поток рассеяния Фσ1 создаётся только током I1 и не зависит от наличия тока I2 во вторичной обмотке. При соединении фаз потребителя треугольником каждая из фаз подключается на линейное напряжение Расчет электротехнических цепей Лабораторные работы и решение задач

 

Рисунок 5.1 – Схема устройства трансформатора

Активное сопротивление обмотки якоря (Ra) в омах

, (9)

где la - длина магнитопровода без вентиляционных каналов, см;

t - полюсное деление, см;

Ja - плотность тока в обмотке якоря, A/мм2;

Uk - межсегментное напряжение на коллекторе, В, которое следует определять по формуле

, (10)

Ai - линейная нагрузка якоря А/см;

r - радиус якоря, см.

Суммарное сопротивление якорной и компенсационной обмоток и обмотки добавочных полюсов с учетом падения напряжения на щетках (Rя) в омах

» 2Ra. (11)

Полный поток, сцеплённый с первичной обмоткой, Ф1 = Ф + Фσ1. (5.1).

При наличии тока во вторичной обмотке поток взаимоиндукции Ф создаётся действием намагничивающих сил F1 и F2, где F1 = w1I1, a F2 = w2I2.

ЭДС Eσ1 пропорциональна магнитному потоку Фσ1, а ЭДС E σ2 – потоку Фσ2.

Приведенный трансформатор и его схема замещения В реальном трансформаторе числа витков w1 ≠ w2 , поэтому Е1 ≠ Е2 , I1 ≠ I2 и, как следствие, различны активные r1, r2 и реактивные x1, x2 сопротивления обмоток.

В реальных трансформаторах между первичной и вторичной обмотками существует магнитная связь.

Режимы работы трансформатора В зависимости от величины сопротивления нагрузки трансформатор может работать в трех режимах:1 Холостой ход при сопротивлении нагрузки zн = ∞. 2 Короткое замыкание при zн = 0. 3 Нагрузочный режим при 0 < zн < ∞.

Для определения напряжения короткого замыкания, потерь в обмотках и сопротивлений rк и xк проводят опыт короткого замыкания.

В трансформаторе имеются два вида потерь: магнитные потери, вызванные прохождением магнитного потока по магнитопроводу, и электрические потери, возникающие при протекании тока по обмоткам.

Расчёт параметров трёхфазного трансформатора Трёхфазный трансформатор имеет следующие данные: номинальная мощность Sн = 63000 ВА, номинальные напряжения U1Н = 10000 B и U2Н = U20 = = 400 В, потери холостого хода P0 = 265 Вт, потери короткого замыкания PКН = 1280 Вт, напряжение короткого замыкания uк составляет 5,5 % от номинального значения, ток холостого хода i0 cоставляет 2,8 % от номинальной величины.

Абсолютное значение фазного напряжения короткого замыкания.

Электрические цепи различаются по числу их внешних зажимов, к которым могут, подведены воздействия или (и) между которыми важно знать реакции, т. е., иначе говоря, по числу полюсов, с помощью которых данная цепь может быть соединена с другими, внешними по отношению к ней цепями. Так появляется понятие о N-полюснике, например двухполюснике, четырехполюснике или многополюснике, схемные изображения, которых приведены на рис 1.3.


Рис. 1.3.

Чаще других используются понятия двухполюсника и четырехполюсника.


Расчёт сложной цепи с помощью законов Кирхгофа.