Эпюры внутренних усилий при кручении Рациональные формы поперечных сечений при изгибе Расчет сварных соединений Изгиб балки при действии продольных и поперечных сил. Способ сравнения деформаций

Сопромат курс лекций Примеры, задачи

Техническая механика - комплексная дисциплина. Она включает три раздела: "Теоретическая механика", "Сопротивление материалов", "Детали машин". "Теоретическая механика" - раздел, в котором излагаются основные законы движения твердых тел и их взаимодействия.

Эпюры внутренних усилий при кручении

Кручением называется простой вид сопротивления, при котором к брусу (валу) прикладываются внешние пары сил в плоскостях, совпадающих с поперечным сечением вала, а в последних возникает только внутренний крутящий момент.

Рассмотрим расчетную схему вала, нагруженного двумя сосредоточенными моментами М и 2М и распределенными по длине: m, рис.2. Наука о прочности, жесткости и надежности элементов инженерных конструкций Прочность при циклически изменяющихся напряжениях. Многие детали машин в процессе работы испытывают напряжения, циклически меняющиеся во времени.

Методика построения эпюры аналогична только что рассмотренной методике при растяжении-сжатии.

а) расчетная схема, б) первый участок, левая часть в) второй участок, левая часть г) третий участок, правая часть, д) эпюра внутренних крутящих моментов

Рис. 2. Построение эпюры внутренних крутящих моментов: Силовой расчет механизмов с учетом сил трения. Постановка задачи силового расчета: для исследуемого механизма при известных кинематических характеристиках и внешних силах, а также размерах элементов КП и величинах коэффициентов трения в них, определить уравновешивающую силу или момент (управляющее силовое воздействие) и реакции в кинематических парах механизма.

В исходных сечениях No 1,2 и 3 задаются положительными значениями внутренних крутящих моментов М1, М2, М3. Пусть М=ml.

Для первого участка (рис.2 б):

Для второго участка (рис.2 в):

Для третьего участка (рис.2 г):

Границы измерения параметра х3 в следующей системе координат:

Тогда:

Отмеченные значения ординат откладываются на эпюре внутренних крутящих моментов (рис.2 д).

Сопротивление материалов – наука о прочности, жесткости и надежности элементов инженерных конструкций.

При малом числе циклов (N<102) развиваются значительные пластические деформации ( статическое разрушение), при большом числе циклов (N>105) пластические деформации отсутствуют (усталостное разрушение).

Мысленное разрезание бруса на две части произвольным сечением А (рис.1 a), приводит к условиям равновесия каждой из двух отсеченных частей (рис.1 б,в).

Соединение левой и правой мысленно отсеченных частей бруса приводит к известному (3) принципу равенства по модулю и противоположной направленности всех одноименных компонент внутренних усилий, а условие равновесии бруса определяется в виде:P1, P2, P3, …, N’, N”, Q’y, Q”y, Q’z, Q”z, M’x, M”x,

Эпюры внутренних усилий при растяжении-сжатии и кручении.

Эпюры внутренних усилий при прямом изгибе. Прямым изгибом называется такой вид простого сопротивления, когда внешние силы приложены перпендикулярно продольной оси бруса (балки) и расположены в одной из главных плоскостей в соответствие с конфигурацией поперечного сечения балки.

После мысленного рассечения балки нормальным сечением 1—1 рассмотрим равновесие левой отсеченной части (рис.1 б), получим:

Дифферинциальные зависимости между внутренними усилиями при изгибе.

Рассмотрим второй характерный пример изгиба двухопорной балки (рис.3).

На основе дифференциальной связи Q и М, получим: для первого участка:Q > 0 и М возрастает от нуля до .Q = const и M x.

На обеих опорах изгибающий момент отсутствует. Тем не менее опасным сечением балки будет центр пролета при .

Понятие о напряжениях и деформациях Как отмечалось выше, внутренние силы, действующие в некотором сечении со стороны отброшенной части тела, можно привести к главному вектору и главному моменту.

Деформации тела характеризуются изменением взаимного расположения точек тела до и после деформации.

Напряженное состояние в точке. Тензор напряжений.

Свойства тензора напряжений. Главные напряжения.

Проектируя силы, действующие на гранях элементарного тетраэдра, на координатные оси, получим уравнения равновесия для рассматриваемого объема.

Главные напряжения обладают важным свойством: по сравнению со всеми другими площадками нормальные напряжения на главных площадках принимают экстремальные значения.

Плоское напряженное состояние Рассмотрим важный для приложений случай плоского напряженного состояния, реализуемого, например, в плоскости Oyz. Тензор напряжений в этом случае имеет вид .

Нормальное и касательное напряжения на наклонной площадке выражаются через угол следующим образом:(2)

Величины экстремальных касательных напряжений получим после подстановки (5) в соотношение (3) с использованием формул.

По определению относительная линейная деформация в точке М в направлении оси Ох равна .

Инварианты тензора деформаций определяются аналогичными формулами, причем первый инвариант тензора малых деформаций имеет ясный физический смысл.

Высокий уровень нагружения может вызвать разрушение, т. е. разделение тела на части.

При одновременном действии напряжений по трем ортогональным осям, когда отсутствуют касательные напряжения, для линейно-упругого материала справедлив принцип суперпозиции (наложения решений):

Соответствующий коэффициент пропорциональности К называется объемным модулем упругости.

Механические характеристики Е, , G и К находятся после обработки экспериментальных данных испытаний образцов на различные виды нагрузок.

Потенциальная энергия упрогой деформации Рассмотрим вначале элементарный объем dV=dxdydz в условиях одноосного напряженного состояния (рис. 1).

Подобные соотношения будут иметь место при сдвиге в других плоскостях. В общем случае напряженно-деформированного состояния будем иметь

(11) .

Резьбовые соединения. Основные понятия и классификация резьб. Стандарты на резьбы. Основные геометрические параметры резьб. Момент завинчивания в резьбе, коэффициент полезного действия, явление самоторможения. Расчет незатянутого резьбового соединения, нагруженного осевой силой. Расчет резьбового соединения, нагруженного осевой силой и крутящим моментом. Расчет резьбового соединения, нагруженного отрывающей силой. Расчет резьбового соединения, нагруженного силами в плоскости стыка. Расчет резьбового соединения, нагруженного внецентренной силой. Расчет фрикционно-винтового соединения.
Механические характеристики материалов.