Способ сравнения деформаций. Влияние различных факторов на механические характеристики материалов Наибольшее и наименьшее значения центральных моментов инерции Рациональные формы поперечных сечений при изгибе

Сопромат курс лекций Примеры, задачи

Вторая аксиома Две силы, равные по модулю и направленные по одной прямой в разные стороны, уравновешива-ются

Теорема Кастильяно.

Установим теперь метод определения перемещений, основанный на вычислении потенциальной энергии деформации. Поставим задачу нахождения перемещений точек упругой системы по направлению действия приложенных к этой системе внешних сил.

Будем решать эту задачу в несколько приемов; сначала рассмотрим более простой случай (Рис.1), когда на балку в сечениях 1, 2, 3,... действуют только сосредоточенные силы , )... и т. д. Под действием этих сил балка прогнется по кривой и останется в равновесии.

Прогибы сечений 1, 2, 3,..., в которых приложены силы , , ,..., обозначим ,, ,... и т. д. Найдем один из этих прогибов, например — прогиб сечения, в котором приложена сила .

Переведем балку, не нарушая равновесия, из положения в смежное положение , показанное на фиг. 328 пунктиром. Это можно сделать различными приемами: добавить новую нагрузку, увеличить уже приложенные и т. д.

Мы представим себе, что для перехода к смежному деформированному состоянию к силе сделана бесконечно малая добавка (Рис.1); чтобы при этом переходе не нарушать равновесия, будем считать, что эта добавка прикладывается статически, т. е. возрастает от нуля до окончательного значения медленно и постепенно. Масштабы Чеpтежи, на котоpых изобpажения выполнены в истинную величину, дают пpавильное пpедставление о действительных pазмеpах пpедмета.

Расчетная модель к теореме Кастильяно.

При переходе от состояния балки к состоянию все нагрузки Р опустятся, значит, их потенциальная энергия уменьшится. Так как равновесие не нарушалось, то уменьшение, энергии нагрузок целиком преобразовалось в увеличение потенциальной энергии деформаций балки dU. Величина измеряется работой внешних сил при переходе балки из положения в положение II:

Изменение dU потенциальной энергии деформации, являющейся функцией сил , , ,..., произошло за счет очень малого приращения одной из этих независимых переменных , поэтому дифференциал такой сложной функции равен:

Что касается величины , то эта работа в свою очередь является разностью работы нагрузок Р для положений и :

Работа при одновременном и постепенном возрастании сил Р равна:

При вычислении работы учтем, что ее величина всецело определяется окончательной формой деформированной балки и не зависит от порядка, в котором производилась нагрузка.

Валы и оси. Виды валов и осей, конструкции, используемые материалы. Расчетные схемы при расчете валов. Критерии работоспособности и расчета валов и осей. Расчет валов на прочность и жесткость. Расчет валов на выносливость и колебания.
Расчет балок переменного сечения