Вещественные и комплексные числа Последовательности Предел функции Непрерывные функции Дифференциальное исчисление Формула Тейлора Элементы теории кривых Исследования характера поведения функций

Примеры решения задач типового расчета

 

Указания к задаче 1.Все варианты задачи 1 разбиваются на два типа. В вариантах первого типа необходимо изменить порядок интегрирования

+

Преобразование декартовых прямоугольных координат на плоскости

 

В вариантах второго типа необходимо изменить порядок интегрирования.

 

Напомним, что выражение 

 

обозначает двойной интеграл от функции  по области D.

Пусть область D задана в виде  

(это означает, что D состоит только из тех точек, координаты которых удовлетворяют неравенствам в фигурных скобках). Эта область слева ограничена прямой , справа прямой , снизу - кривой , сверху кривой Двойной интеграл от функции  по такой области вычисляется по формуле

(1)

 

 

  Функции нескольких переменных представляет собой функцию трех переменных: х, у и z. Область определения этой функции задается неравенствам х > 0, у > 0, z > 0. В экономической теории широко используется понятие произ­водственной функции У = F(x{, х2,..., х„). Эта функция ставит в соответст­вие значениям х,,х,,...,х„ производственных факторов максимально воз­можный объем выпуска продукции Y. В качестве факторов производства могут выступать затраты труда, используемые основные фонды, используе­мый капитал и др. В зависимости от конкретной задачи для анализа эффек­тивности производства применяются однофакторная производственная функция (например, У= F (L), где L - трудозатраты), двухфакторная произ­водственная функция (например, Y =f(K, L), где Z,- трудозатраты, К-производственные фонды), многофакторная производственная функция.

Лекции, конспекты, курсовые, примеры решения задач