http://www.infodez.ru/
Вещественные и комплексные числа Последовательности Предел функции Непрерывные функции Дифференциальное исчисление Формула Тейлора Элементы теории кривых Исследования характера поведения функций

 

  Интегралы, зависящие от параметра

Примеры вычисления несобственных интегралов, зависящих от параметра

Формула Фруллани. Функция f(x) непрерывна и интеграл  существует для любого A > 0.

=, =====- f(0). Найти объем тела W, заданного ограничивающими его поверхностями Примеры решения задач типового расчета

= f(0).

Интегрированием по частям вычисляются интегралы

, a ³ 0, , a ³ 0 .

Другой способ: Положим g = -a + ib , , откуда и следуют указанные формулы. Скалярное поле Примеры решения и оформления задач контрольной работы

Вычислить

.

, =+С.

== Þ С = 0.

Описание метода простых итераций. Вернемся теперь к решению системы линейных уравнений, преобразованной к виду (9.1). Решить систему - значит найти неподвижную точку Х такую, что если подставить ее координаты в правые части уравнений (9.1), то получим ту же точку Х.

Случай диагонального преобладания. Если в исходной системе все элементы, стоящие на главной диагонали, по модулю больше, чем сумма модулей остальных элементов в этой же строке (столбце) матрицы А, то для приведения к нужному виду в левой части оставляют только диагональные элементы, а остальные переносят в правую часть и каждое уравнение делят на диагональные элементы.

 

  Поверхности второго порядка Классификация поверхностей. Наряду с плоскостью, особое место среди поверхностей занимают поверхности второго порядка. Если F(x,y,z)- многочлен л-ой степени относительно х, у и z , где и - натуральное число (п > 1), то поверхность, заданная уравнением F(jc,_j/,z) = 0 , называется поверхностью 2 порядка. Пример. Плоскость Ах + By + Cz + D = О - поверхность первого порядка. Пример. Общее уравнение поверхности второго порядка имеет следующий вид Ах2 + By2 + Cz7 + 2Dxy + 2Exz + 2Fyz + Gx + Hy + Kz + L=0. Здесь ко­эффициенты уравнения А, В, С, D, E и F одновременно не равны нулю. Замечание. Поверхность - более общее понятие, чем график функции двух переменных z = f(x,y), заданной явно. Часто поверхность представляет собой совокупность графиков функций двух переменных, заданных неявно. Уравнение сферы. Напомним, что сфера есть множество точек пространства, равноудаленных от некоторой точки (от центра сферы).

Лекции, конспекты, курсовые, примеры решения задач