Вещественные и комплексные числа Последовательности Предел функции Непрерывные функции Дифференциальное исчисление Формула Тейлора Элементы теории кривых Исследования характера поведения функций

 

  Интегралы, зависящие от параметра

Бета функция Эйлера В(p,q) = , p > 0 , q >0 .

Сделаем замену  , dx = .

В(p,q) = =. Найти площадь фигуры, ограниченной данными линиями Примеры решения задач типового расчета

В(p,q) =   (2)

Некоторые свойства функций Эйлера

Из формулы (1) следует, что

, . Интегрируя, получим  . Откуда, используя (2) Функции комплексной переменной Примеры решения и оформления задач контрольной работы

Г В(p,q) = Г  Г .

В(p,1-p) = Г  Г ==.

 

Г(1) = 1, Г(p+1) = p Г(p).

Отметим, что из этой формулы следует, что Гамма функцию достаточно знать на интервале (0, 1/2).

Интеграл  сходится равномерно на любом [e , A ], 0 < e < A. Поэтому интеграл можно дифференцировать по параметру. Рассмотрим интеграл .

В окрестности нуля |ln x| £ для e > 0 существует C1(e).

В окрестности бесконечности |ln x| £ для e > 0 существует C2(e).

Интеграл Г(k)(p)=  сходится равномерно на любом компакте. Это следует из оценок £+ , pÎ[e , A]. Здесь для степеней логарифма справедливы оценки:

В окрестности нуля интеграл  сходится при 0<a<1, действительно т. к. xb-alnkx = .

В окрестности бесконечности  сходится, действительно

xA-1|ln k x| £ C xA т. к.   и кроме того .

Компакт-метод. Как уже отмечалось, метод квадратного корня применим только для систем с симметричной матрицей A.

Метод простых итераций Данный метод относится к приближенным методам решения систем линейных уравнений.

 

  Поверхности второго порядка Классификация поверхностей. Наряду с плоскостью, особое место среди поверхностей занимают поверхности второго порядка. Если F(x,y,z)- многочлен л-ой степени относительно х, у и z , где и - натуральное число (п > 1), то поверхность, заданная уравнением F(jc,_j/,z) = 0 , называется поверхностью 2 порядка. Пример. Плоскость Ах + By + Cz + D = О - поверхность первого порядка. Пример. Общее уравнение поверхности второго порядка имеет следующий вид Ах2 + By2 + Cz7 + 2Dxy + 2Exz + 2Fyz + Gx + Hy + Kz + L=0. Здесь ко­эффициенты уравнения А, В, С, D, E и F одновременно не равны нулю. Замечание. Поверхность - более общее понятие, чем график функции двух переменных z = f(x,y), заданной явно. Часто поверхность представляет собой совокупность графиков функций двух переменных, заданных неявно. Уравнение сферы. Напомним, что сфера есть множество точек пространства, равноудаленных от некоторой точки (от центра сферы).

Лекции, конспекты, курсовые, примеры решения задач