Вещественные и комплексные числа Последовательности Предел функции Непрерывные функции Дифференциальное исчисление Формула Тейлора Элементы теории кривых Исследования характера поведения функций

 

  Интегралы, зависящие от параметра

Дифференцирование интегралов, зависящих от параметра

Теорема (Лейбниц). Если f и  непрерывны в [a,b]´ [c,d] , то F(y) =

дифференцируема на [c,d] и . Функциональные ряды

Доказательство.

==, 0<q <1. Тогда

£.

Из этого неравенства и равномерной непрерывности функции  следует требуемое утверждение. Криволинейный интеграл Примеры решения и оформления задач контрольной работы

Рассмотрим область типа В, указанную на рисунке и функцию f , определенную на прямоугольнике [a,b]´ [c,d], содержащем область D.

Теорема. Если f и ее производная непрерывны на [a,b]´ [c,d], x1(y), x2(y) имеют непрерывные на [c,d] производные, то F(y) =  также имеет производную

+-.

Доказательство. Рассмотрим функцию Ф(y,u,v) = . Для нее существуют непрерывные частные производные (не очевидным является непрерывность функции ). Дифференцируя сложную функцию F(y) = = Ф(y, x1(y), x2(y)) получим требуемое равенство. Непрерывность функции = следует из равномерной непрерывности функции  .

 

Разберем пример 5.1 нахождения наилучшей линейной функции.Пусть зависимость задана таблицей.

Сведение поиска функций другого вида к поиску линейной функции. При поиске функций другого вида (3-8) задача сводится к рассмотренной выше задаче нахождения наилучшей линейной функции.

  Поверхности второго порядка Классификация поверхностей. Наряду с плоскостью, особое место среди поверхностей занимают поверхности второго порядка. Если F(x,y,z)- многочлен л-ой степени относительно х, у и z , где и - натуральное число (п > 1), то поверхность, заданная уравнением F(jc,_j/,z) = 0 , называется поверхностью 2 порядка. Пример. Плоскость Ах + By + Cz + D = О - поверхность первого порядка. Пример. Общее уравнение поверхности второго порядка имеет следующий вид Ах2 + By2 + Cz7 + 2Dxy + 2Exz + 2Fyz + Gx + Hy + Kz + L=0. Здесь ко­эффициенты уравнения А, В, С, D, E и F одновременно не равны нулю. Замечание. Поверхность - более общее понятие, чем график функции двух переменных z = f(x,y), заданной явно. Часто поверхность представляет собой совокупность графиков функций двух переменных, заданных неявно. Уравнение сферы. Напомним, что сфера есть множество точек пространства, равноудаленных от некоторой точки (от центра сферы).

Лекции, конспекты, курсовые, примеры решения задач