Вещественные и комплексные числа Последовательности Предел функции Непрерывные функции Дифференциальное исчисление Формула Тейлора Элементы теории кривых Исследования характера поведения функций

Криволинейные интегралы

Формула Грина

Рассмотрим область типа A ( см. рис. ) D={(x,y):y1(x)£ y £ y2(x), xÎ[a,b]}, где y1(x)£ y2(x), две непрерывные функции на отрезке [a,b]. Двойные интегралы в полярных координатах Тройные и двойные интегралы при решении задач

Тройной интеграл При рассмотрении тройного инеграла не будем подробно останавливаться на всех тех теоретических выкладках, которые были детально разобраны применительно к двойному интегралу, т.к. существенных различий между ними нет. Единственное отличие заключается в том, что при нахождении тройного интеграла интегрирование ведется не по двум, а по трем переменным, а областью интегрирования является не часть плоскости, а некоторая область в трехмерном пространстве.

Границу этой области с положительным направлением обхода обозначим G . Пусть в области D задана функция P(x,y), непрерывная там вместе с . Тогда справедлива формула

= -. (1)

Доказательство. ===-=.

Аналогично, можно показать, что для области типа B (см. рис. )

справедлива формула

= . (2)

Если область является одновременно областью и типа A и типа B , то из (1), (2) для поля =(P,Q) получается формула

  (3)

Формулы (1), (2), (3) называются формулами Грина.

Замечание. Формула (3) верна и для областей более общего вида. В частности, если область можно разбить непрерывными кривыми на конечное число областей, для каждой из которых формула (3) справедлива, то эта формула будет верна и для всей области.

  Поверхности второго порядка Классификация поверхностей. Наряду с плоскостью, особое место среди поверхностей занимают поверхности второго порядка. Если F(x,y,z)- многочлен л-ой степени относительно х, у и z , где и - натуральное число (п > 1), то поверхность, заданная уравнением F(jc,_j/,z) = 0 , называется поверхностью 2 порядка. Пример. Плоскость Ах + By + Cz + D = О - поверхность первого порядка. Пример. Общее уравнение поверхности второго порядка имеет следующий вид Ах2 + By2 + Cz7 + 2Dxy + 2Exz + 2Fyz + Gx + Hy + Kz + L=0. Здесь ко­эффициенты уравнения А, В, С, D, E и F одновременно не равны нулю. Замечание. Поверхность - более общее понятие, чем график функции двух переменных z = f(x,y), заданной явно. Часто поверхность представляет собой совокупность графиков функций двух переменных, заданных неявно. Уравнение сферы. Напомним, что сфера есть множество точек пространства, равноудаленных от некоторой точки (от центра сферы).

Лекции, конспекты, курсовые, примеры решения задач