Вещественные и комплексные числа Последовательности Предел функции Непрерывные функции Дифференциальное исчисление Формула Тейлора Элементы теории кривых Исследования характера поведения функций

 Интегральное исчисление

Интегралы, не выражающиеся через элементарные функции

а) Дифференциальные биномы

(a+bxn)pxm, когда не является целой ни одна из трех дробей p, , +p.

б) Интеграл . Методы интегрирования Примеры решения задач курс лекций Способ подстановки (замены переменных) Интегральное исчисление.

в) Интегралы вида , где - многочлен степени 3, 4 в ряде случаев не выражается через элементарные функции (эллиптические интегралы ). В частности, следующие интегралы не являются элементарными функциями

, , 0<k<1; Интегральное исчисление Математика лекции примеры решения задач

или ( после замены )

, .

Математика лекции и примеры решения задач Несобственные интегралы с бесконечными пределами Если положить промежуток интегрирования бесконечным, то приведенное выше определение определенного интеграла теряет смысл, например, потому что невозможно осуществить условия n®¥;l®0 для бесконечного промежутка. Для такого интеграла требуется специальное определение.

 

Лекции, конспекты, курсовые, примеры решения задач