Вещественные и комплексные числа Последовательности Предел функции Непрерывные функции Дифференциальное исчисление Формула Тейлора Элементы теории кривых Исследования характера поведения функций

 Интегральное исчисление

Интегрирование некоторых иррациональностей

  1.

  Через R(u,v,…,w) здесь обозначается рациональная функция, то есть выражение, которое может быть получено с помощью конечного числа операций сложения и деления над выражениями u,v,…,w и произвольными константами. Отметим, что суперпозиция рациональных функций будет также рациональной функцией. Примеры решения задач курс лекций Первообразная функция Интегральное исчисление.

Пример. Функция указанного в интеграле вида представлена ниже

= Дифуры Математика лекции примеры решения задач

Интегралы такого вида приводятся к интегралам от рациональных функций с помощью замены , m – общий знаменатель дробей a,…,g. В рассмотренном выше примере m=18.

2. Подстановки Эйлера

a) a>0,

В этом случае ax2+bx+c=ax2+2 xt+t2, откуда -рациональная функция. Таким образом, подинтегральное выражение примет вид

=R1(t)-рациональная функция от t. Кроме того dx=R2(t)dt.

b) Корни x1,x2 квадратного трехчлена ax2+bx+c вещественные, тогда ax2+bx+c =a(x - x1)(x - x2)

Если x1 = x2 , то =|x – x1| и иррациональность отсутствует. Если x1 ¹ x2, то полагают  и задача сводится к ранее рассмотренной

.

В этом случае можно так же сделать замену .

c) c>0

. В этом случае

ax2+bx+c= x2t2+2 xt+ с, ax+b= xt2 +2t, - рациональная функция. После замены получим

=R1(t) - рациональная функция от t, dx=R2(t)dt.

Можно показать, что этими тремя подстановками исчерпываются всевозможные случаи (если a<0 и c<0 и действительных корней нет, то выражение ax2+bx+c<0 для всех x).

Множество D называют областью определения функции, переменные х и у- независимыми переменными или аргументами, переменную z - зависимой переменной (или функцией). Множество всех значений, которые принимает переменная z, называют областью значении функции. Функция двух переменных, так же как и функция одной переменной, может быть задана различными способами: явно, неявно, параметрически и др. Мы будем рассматривать в основном функции, заданные явно с помощью формулы z = f(x,y). Таким образом, областью определения функции двух переменных z =f(x, у) является некоторое множество точек М(х; у) плоскости Оху. Определение. Графиком функции z = f(x,y) двух независимых пе­ременных х и у называется множество всех точек Р(х;у ;f(x,y)) пространства Oxyz 

Лекции, конспекты, курсовые, примеры решения задач