Вещественные и комплексные числа Последовательности Предел функции Непрерывные функции Дифференциальное исчисление Формула Тейлора Элементы теории кривых Исследования характера поведения функций

Функции многих переменных

Критерий Коши существования конечного предела.

Для существования конечного предела   необходимо и достаточно, чтобы

"e>0$d>0"x¢,x¢¢ÎDÇ :|f(x¢¢)-f(x¢)|<e.

Доказательство проводится так же, как и для функции одного переменного. Использование непрерывности функций при вычислении пределов

Необходимость. e>0,e/2®$ "xÎÇD:|f(x)-A|<e/2. Для x¢,x¢¢ÎÇD получим требуемое неравенство |f(x¢)-f(x¢¢)|<|f(x¢)-A|+|f(x¢¢)-A|e/2+e/2=e.

Достаточность. Пусть {xk} последовательность типа Гейне. Тогда {f(xk)} Некоторые свойства интеграла ФНП

будет удовлетворять условию Коши для последовательностей, поэтому существует некоторый предел . Докажем, что для любой другой последовательности типа Гейне {yk} как в Гейне предел будет также равен B. Составим последовательность

Эта последовательность будет последовательностью типа Гейне и, как уже доказано, предел  должен существовать. Тогда все частичные пределы должны совпадать, в частности, =.

  Множество D называют областью определения функции, переменные х и у- независимыми переменными или аргументами, переменную z - зависимой переменной (или функцией). Множество всех значений, которые принимает переменная z, называют областью значении функции. Функция двух переменных, так же как и функция одной переменной, может быть задана различными способами: явно, неявно, параметрически и др. Мы будем рассматривать в основном функции, заданные явно с помощью формулы z = f(x,y). Таким образом, областью определения функции двух переменных z =f(x, у) является некоторое множество точек М(х; у) плоскости Оху. Определение. Графиком функции z = f(x,y) двух независимых пе­ременных х и у называется множество всех точек Р(х;у ;f(x,y)) пространства Oxyz 

Лекции, конспекты, курсовые, примеры решения задач