Вещественные и комплексные числа Последовательности Предел функции Непрерывные функции Дифференциальное исчисление Формула Тейлора Элементы теории кривых Исследования характера поведения функций

Непрерывные функции

Простейшие свойства непрерывных функций

1) Сумма, разность и произведение двух непрерывных функций в точке является непрерывной функцией в этой точке. Определить вид кривой . Справочный материал и примеры к выполнению контрольной работы по математике

Следствие: Сумма, разность и произведение двух непрерывных функций на множестве является непрерывной функцией на этом множестве.

2) Сохранение знака непрерывной функции: f(x0)>0Þ$U(x0):f(x)>.

3) Если f(x) непрерывна в точке x0, g(x) непрерывна в x0, g(x0)¹0, то функция  непрерывна в x0.

4) Функция |f(x)| непрерывна, если непрерывна f(x).

5) Суперпозиция непрерывных функций есть непрерывная функция. Математика решение задач Свойтва числовых множеств

Если f(x) определена в окрестности x0 и непрерывна в x0,

g(x) определена в окрестности t0 и непрерывна в t0, g(t0)=x0. Тогда в некоторой окрестности тоски t0 определена суперпозиция F(t)=f(g(t)) и F(t) непрерывна в t0.

Все перечисленные свойства являются непосредственным следствием соответствующих свойств пределов функций.

Классификация точек разрыва

Если f(x) не является непрерывной в точке x0, то x0 – точка разрыва. В этом случае говорят, что функция разрывная (разрывна) в точке x0 , или , функция претерпевает разрыв в точке x0 .

В дальнейшем будет предлагать, что f(x) определена в некоторой окрестности x0 (быть может, односторонней).

Опр. Если существуют конечные пределы

f(x0 - 0)f(x) и f(x0+0)f(x)

и f(x) разрывна в точке x0 , то такой разрыв называется разрывом первого рода. Если при этом f(x0 - 0)=f(x0+0), то разрыв называется устранимым.

Разрыв не первого рода называется разрывом второго рода.

Аналогично классифицируются разрывы для функции, определенной в полуокрестности точки. Например, пусть функция f(x) определена на отрезке [a,b].

  Она называется непрерывной справа в точке a , если f(a)= f(x). Если существует конечный предел f(a+0)f(x) и f(a)¹ f(a+0) , то такой разрыв называется разрывом первого рода (устранимым).

Элементы теории множеств Множество относится к числу первичных, неопределяемых понятий математики. Под словом «множество» обычно понимается совокупность тех или иных объектов, объединенных каким-либо общим признаком или свойством. Примеры. Множество товаров и услуг, бюджетное множество, множество производственных возможностей, множество ресурсов производства, множество действительных чисел, множество точек прямой, множество точек на плоскости, множество векторов, множество функций, множество функций одной переменной, множество корней квадратного уравнения, множество точек пространства и т. д.

Лекции, конспекты, курсовые, примеры решения задач